Simulation of Historical Rainfall over Indochina Peninsula

Hiroshi OKUMURA, Taichi TEbAKARI, Tianqi aO \& Junichi YoShitani, Public Works Research Institute of Japan

Abstract

Abstruct. PWRI is developing a methodology to reconstruct historical rainfall over ungaged basins with only several ground observation data. In this study we present a new approach for PUB (Prediction in Ungaged Basins) applying the Kalman filter Hydrological Atmospheric Model (KHAM). This method is based on the state-space moedel of two parts. The one is the system model which can express the state of a hydrological phenomena and consider system noise. The other is the observation equation which can consider the observation noise. Putting hydrological observation data located at only several points into the KAHM, the whole spatial and temporal distritution of the hydrological state can be estimated. An optimal estimate can be expressed by the condional expectation of the state which is obtained from a computational solution of the stochastic method of least squares. KAHM will reconstruct past historical rainfall over the Chao Phraya river basin in 2000 with only 10 points observation rainfall data.

State Space Model

The Kalman filter is based on a set of two equations. The one is the system model which can express the state of a hydrological phenomena, the other is observation equation. The system model can be written as;

$$
x_{k+1}=F_{k} x_{k}+G_{k} v_{k}
$$

where x_{k} is state vector at time k, F_{k} is state transition matirx, and G_{k} is driving matrix. In this study, rainfall is the state vector. The observation equation is given as;

$$
y_{k}=H_{k} x_{k}+w_{k}
$$

where y_{k} is observation vector at time k and H_{k} is observation matrix. The observation matrix specifies the position at which the observation is carried out

Assumptions

The random variable v_{k} and w_{k} represent the system and obser vational noises. They are assumed to be independent each other and with normal probability distributions:

$$
v_{k} \sim N(0, Q), \quad w_{k} \sim N(0, R)
$$

where Q is the system error covariance, and R is the observation error covariance. Optimal estimate \hat{x}_{k} and estimate x_{k}^{*} are written as follows;

$$
\hat{x}_{k}=E\left[x_{k} \mid Y_{k}\right], \quad x_{k}^{*}=E\left[x_{k} \mid Y_{k-1}\right]
$$

These equations mean that the optimal estimate \hat{x}_{k} and estimate x_{k}^{*} are the average of x_{k} knowing the measurements Y_{k} and Y_{k-1} respectively, where $Y_{k}=\left\{y_{1}, y_{2}, \cdots, y_{k}\right\}$. The covariances P_{k} and Γ_{k} are:

$$
\begin{aligned}
& P_{k}=\operatorname{cov}\left\{x_{k} \mid Y_{k}\right\}=E\left[\left(x_{k}-\hat{x}_{k}\right)\left(x_{k}-\hat{x}_{k}\right)^{T}\right] \\
& \Gamma_{k}=\operatorname{cov}\left\{x_{k} \mid Y_{k-1}\right]=E\left[\left(x_{k}-x_{k}^{*}\right)\left(x_{k}-x_{k}^{*}\right)\right]
\end{aligned}
$$

The whole process is assumed that the phenomena are steady

Map of southern Asia and computational area

Formulation

The Bayes rule gives the following equation:

$$
\mathcal{P}\left(x_{k} \mid Y_{k}\right)=\frac{\mathcal{P}\left(y_{k} \mid x_{k}\right) \mathcal{P}\left(x_{k} \mid Y_{k-1}\right)}{\mathcal{P}\left(y_{k} \mid Y_{k-1}\right)}
$$

where $\mathcal{P}\left(x_{k} \mid Y_{k}\right)$ is the conditional probability. Using the asumption and the Bayes rule, optimal estimate, Kalman gain and esti mate error covariance can be rewritten as follows;
Optimal Estimate

$$
\hat{\boldsymbol{x}}_{k}=\boldsymbol{x}_{k}^{*}+\boldsymbol{K}_{k}\left(\boldsymbol{y}_{k}-\boldsymbol{H}_{k} \boldsymbol{x}_{k}^{*}\right)
$$

Kalman Gain

$$
\boldsymbol{K}_{k}=\boldsymbol{\Gamma}_{k} \boldsymbol{H}_{k}^{T}\left(\boldsymbol{R}+\boldsymbol{H}_{k} \boldsymbol{\Gamma}_{k} \boldsymbol{H}_{k}^{T}\right)^{-1}
$$

Estimate Error Covariance

$$
\boldsymbol{P}_{k}=\left(\boldsymbol{I}-\boldsymbol{K}_{k} \boldsymbol{H}_{k}\right) \boldsymbol{\Gamma}_{k}
$$

Time series of daily rainfall (observation vs estimation) at station No. 5

Algorithm of KHAM

-"

Apr.

Comparison of observed and estimated monthly rainfall area. Each left figure is observed monthly rainfall. Each right figure is computed monthly rainfall obtained by KHAM

