Technology for Flood Forecasting System

- 1) Objective and concept of GFAS-Streamflow and IFAS by Kazu FUKAMI
- 2) Major features and functions of IFAS for poorly-gauged river basins

by Jun MAGOME

Hydrologic Engineering Research Team, International Centre for Water Hazard and Risk Management (ICHARM) Public Works Research Institute (PWRI)

ICHARN

Flood disaster is still increasing...

Average numbers of people affected by natural disasters (1973-2002)

Source: "World Disaster Report 2004" International Federation of Red Cross and Red Crescent Societies

- Aug. 2007: Nepal-India-Bagladesh
- Nov. 2007: Cyclone Sidr (Bangladesh)
- May 2008: Cyclone Nargis (Myammar)
- July-Sep. 2008: Many guerrilla storms (Japan)
- Aug. 2008: Mississippi River (USA)
- Aug. 2008: Hurricane Gustav (Caribbean countries)
- Sep. 2008: Hurricane Ike (Caribbean countries)
- Etc.....

Priority actions

January, 2005 UN World Conference on Disaster Reduction (Kobe) <u>Hyogo Framework for Action 2005-2015</u>: -Building Resilience of Nations and Communities to Disasters-

- 1) Ensure that disaster risk reduction is a national and a local priority with a strong institutional basis for implementation.
- 2) Identify, assess and monitor disaster risks and enhance early warning.
- 3) Use knowledge, innovation and education to build a culture of safety and resilience at all levels.
- 4) Reduce the underlying risk factors.
- 5) Strengthen disaster preparedness for effective response at all levels.

Flood disaster mitigation with flood forecasting and warning systems

- 1. Monitoring of meteorological & hydrological conditions
- 2. Flood runoff modeling
 - Building rainfall forecasts & runoff analysis
- 3. Analysis of forecasts and judgments on the degree of hazards and risk
- 4. Dissemination of warnings
- 5. Crisis management
 - migration of residents and livestock,
 - re-planning of agricultural schedule (seedings, fertilizing, harvesting, etc.)
 - flood fighting, evacuation, etc.

lainfall station

Rainfall station

Rainfall station

Monitoring station

Rainfall station

Rainfall station

Flood disaster mitigation with flood forecasting and warning systems (Typical situations in developing countries)

1. Monitoring of meteorological & hydrological conditions

× Low density of gauging stations, low sustainability of maintenance of observatories, etc.

- 2. Flood runoff modeling
 - × Lack of hydrological and geophysical data for modeling
 - × Lack of budget and capacity to construct and run the forecasting & warning system

3. Analysis of forecasts and judging risks

- × Lack of real-time hydrologic data
- × No information to identify reliability and uncertainty
- × Lack of capacity to maintain and improve the system with new accumulated data and changing situations

4. Dissemination of warning

- × Lack of disaster-management community and communication network,
- × Incompatibility of flood information with local society and needs, etc.

5. Crisis management

- × Improper governance and preparedness
- × Insufficient institutional cooperation, etc.

Recordable Gauges

- How can we prepare necessary (historical and real-time) hydrologic and geophysical data for rainfall-runoff modeling as the basis for flood forecasting and warning systems <u>in poorly-gauged river basins</u>, especially <u>in developing countries</u>?
- What kind of hydrologic (rainfall-runoff) model is suitable for "worldwide applicable" flood forecasting system under the condition of <u>very limited</u> (hydrologic & geophysical) in-situ data availability?
- Big necessity to prepare any <u>easy and efficient tool</u> just fit to the objective above, with <u>user-friendly</u> interfaces and <u>minimal cost</u> to implement?
- How should the system be to <u>sustain the effectiveness and reliability</u> of the implemented system under changing situations?

- How can we prepare necessary (historical and real-time) hydrologic and geophysical data for rainfall-runoff modeling as the basis for flood forecasting and warning systems <u>in poorly-gauged river basins</u>, especially <u>in developing countries</u>?
- What kind of hydrologic (rainfall-runoff) model is suitable for "worldwide applicable" flood forecasting system under the condition of <u>very limited</u> (hydrologic & geophysical) in-situ data availability?

- How can we prepare necessary (historical and real-time) hydrologic and geophysical data for rainfall-runoff modeling as the basis for flood forecasting and warning systems <u>in poorly-gauged river basins</u>, especially <u>in developing countries</u>?
- What kind of hydrologic (rainfall-runoff) model is suitable for "worldwide applicable" flood forecasting system under the condition of <u>very limited</u> (hydrologic & geophysical) in-situ data availability?
- Big necessity to prepare any <u>easy and efficient tool</u> just fit to the objective above, with <u>user-friendly</u> interfaces and <u>minimal cost</u> to implement?
- How should the system be to <u>sustain the effectiveness and reliability</u> of the implemented system under changing situations?

- Big necessity to prepare any <u>easy and efficient tool</u> just fit to the objective above, with <u>user-friendly</u> interfaces and <u>minimal cost</u> to implement?
- How should the system be to <u>sustain the effectiveness and reliability</u> of the implemented system under changing situations?

Original GFAS concept includes both rainfall alert and basin-scale flood forecasting using satellite information

Directions to overcome technical issues (1/2)
Similar Content System (GFAS) – Streamflow >

- To acquire historical & real-time hydrologic information <u>anywhere</u> <u>in the world</u>
 - → Application of satellite-derived rainfall data and runoff reanalysis with those data

ex.) NASA-<u>3B42RT</u> (GFAS-rainfall), JAXA-<u>Real-time GSMaP</u>

- To secure the availability of flood-runoff (hydrologic) model <u>anywhere in the world</u>
 - →Applying a practical & distributed-parameter hydrologic model, the parameters of which can be estimated on basis of globally available GIS data sets.

E.

ex.) BTOP model, PWRI-PDHM Ver.2, etc.

Example of satellite-based rainfall products

TRMM (Tropical Rainfall Measuring Mission) and 3B42RT

(1) Current System

- Launch of Tropical Rainfall Measuring Mission (TRMM) satellite in 1997
- Near real time data "3B42RT" since 2002 from TRMM, orbital satellites and geostationary satellites

(2) Features

- 3-dimensional analysis of rainfall structure.
- No influence of topography.
- Global coverage including oceans

(3) Data Specifications of "3B42RT"

- Mesh Size: 0.25 degrees of latitude and longitude (rectangle of about 30km by 20km on 40N)
- Coverage Area: between 60N and 60S latitude
- Data Delivery: every 3 hours (not hourly)
 Near-real-time basis with several hours time lag

ftp://trmmopen.gsfc.nasa.gov/pub/merged/mergelRMicro/

Global Flood Alert System (GFAS) – Rainfall by IFNet

Contents of GFAS - Rainfall

Real-time precipitation Map (every 3 hour)

Pre-analyzed rainfall distribution exceeding 10-year return period

E-mail alarm for heavy rainfall

Real-time estimation of rainfall areas Exceeding 10- (or 5-) Year Return Period

Real-Time GSMaP

JAXA, JST-CREST (Prof. Ken'ichi OKAMOTO, Osaka Pref. Univ. et al.)

ICHARM/PWRI

We offer hourly global rainfall maps in near real time (about four hours after observation) using the combined MW-IR algorithm with <u>TRMM TMI</u>, <u>Aqua AMSR-E</u>, DMSP SSM/I and GEO IR data. This system was developed based on activities of the JST-CREST <u>GSMaP (Global Satellite</u> <u>Mapping of Precipitation)</u> project.

Description			
Variable	:	Rainfall rate (mm/hr)	
Domain	:	Global (60N - 60S)	
Grid resolution	:	0.1 degree lat/lon	
Temporal resolution	:	1 hour	

3h basin averaged rainfall data (mm/h)

For major storm events

at Tone River & Yoshino River., Japan

Developing of the correction method for satellite rainfall

The proposal of the correction method considering rainfall movement !

+

Ш

Global Precipitation Measurement (GPM)

Scheme for reports on global precipitation every 3 hours with main satellite and 8 constellation satellites

Japan's contribution: Development of dual precipitation data and launch of H2-A Rocket

Directions to overcome technical issues (2/2)

< Integrated Flood Analysis System (IFAS) >

 \sim To realize the concept of GFAS – Streamflow \sim

For <u>local engineers</u> in developing countries

- To enable the implementation of flood forecasting system with global real-time satellite-based rainfall data and other GIS databases, <u>without much cost and a priori high-tech capacity</u>, *anywhere in developing countries*, and
- To enable *local engineers* to easily improve the accuracy and reliability of the system by combining <u>with in-situ local data</u>
 - → <u>User-friendly interfaces</u> using state-of-the-art technology, including modules to use satellite-based data and to analyze GIS data for building hydrologic models
- To enable local administrators and engineers to utilize IFAS effectively by themselves with the sense of local ownership.
 - → Both <u>technical training</u> and dissemination activities are jointly promoted

Developing countries can utilize advanced technology as easily, effectively and autonomously as possible with the sense of local ownership

Development of IFAS for flood runoff analyses <u>on a river basin scale</u>

• IFAS (Integrated Flood Analysis System)

The software package for the flood runoff analysis equipped with GUI

Developed by joint research (FY2005-2007)
 ICHARM / Public Works Research Institute (PWRI),
 Infrastructure Development Institute (IDI / Secretariat of IF-Net),
 and nine major civil-engineering consulting companies

Distribution of <u>executables</u>, free of charge

Global Flood Alert System (GFAS) - Streamflow

- Toward prompt implementation of flood forecasting / warning systems with the sense of ownership of local users in developing countries -

Plan to promote the implementation of flood forecasting system using GFAS-Streamflow with IFAS

• First Phase (- FY2008)

- To implement the method to utilize newest global satellite-based rainfall products with auto-correction algorithm for heavy rainfall
- To implement the method to utilize global climatic and geophysical datasets available through the
 Internet
- To implement the method to utilize state-of-the-art numerical weather forecast and hydrologic modeling technology with GIS analytical tools
- Effective dissemination of flood forecasts and warnings with universal and graphical visualization
 - \rightarrow Realization of flood forecasting and warning system even in poorly-gauged river basins

• Second Phase (FY2008 -)

- To implement the method to improve the performance of the flood forecasting system by the integration with local in-situ hydro-meteorological data
- To implement the method to attain higher accuracy and efficiency of numerical weather prediction and hydrologic simulation models
- To make the IFAS system compatible with universal platforms such as CommonMP, OpenMI, MMS, etc.
- To hold educational and training seminars and workshops for local administrators/engineers on the theoretical background, usage and maintenance of the IFAS
- To enhance local pilot studies

• Third Phase (FY2009 -)

 Consultation and/or proposal on the arrangement of meteo-hydrological in-situ observation network and flood forecasting system, the improvement of the system, alternatives for flood control and/or integrated flood management, etc. on the basis of experiences of local pilot studies

Technology for Flood Forecasting System

-Major features and functions of IFAS for poorly-gauged river basins –

International Center for Water Hazard and Risk Management under the auspices of UNESCO (ICHARM) hosted by PWRI

Flood Forecasting Using Global Satellite Rainfall Information Based on

Integrated Flood Analysis System

- Key Features -

- 1. Utilization of satellite-based rainfall
- 2. Multi run-off analysis engines
- 3. Automatic model creation
- 4. Visualization of flood forecasting results
- 5. Free distribution

Rainfall Data : Current Functions

) Satellite-based rainfall data

- <u>TMPA-3B42RT (NASA)</u>
- QMORPH/CMORPH (NOAA)
- <u>GSMaP (JST/CREST, OPU, JAXA etc.)</u>

Global coverage : between 60N-60S latitude

Automatic Data Extraction for area of interest

Provided by NASA, NOAA, JAXA and IFNet-GFAS through the Internet for free

2) Ground-based rainfall data

 Observed Own data (Local Ownership)

3) Integration (Correction of I

ل م

Rainfall Data : Rainfall Correction

Modeling

Urban and Built-Up Land Urban area Dryland Cropland and Pasture Wetland Irrigated Cropland and Pasture Wetland Mixed Dryland/Irrigated Cropland and Pasture Grassland Cropland/Grassland Mosaic Grassland Grassland Grassland Mixed Shrubland/Grassland Grassland Deciduous Broadleaf Forest Deciduous Broadleaf Forest	
Dryland Cropland and Pasture W etland Irrigated Cropland and Pasture W etland Mixed Dryland/Irrigated Cropland and Pasture W etland Cropland/Grassland Mosaic Grassland Grassland Grassland Mixed Shrubland/Grassland Grassland Deciduous Broadleaf Forest Deciduous Broadleaf Forest	
Irrigated Cropland and Pasture Wetland Mixed Dryland/Irrigated Cropland and Pasture Wetland Cropland/Grassland Mosaic Grassland Grassland Grassland Mixed Shrubland/Grassland Grassland Deciduous Broadleaf Forest Deciduous Broadleaf Forest	
M ixed Dryland/Arrigated Cropland and Pasture Cropland/Grassland Mosaic Grassland Shrubland Mixed Shrubland/Grassland Savanna Deciduous Broadleaf Forest Deciduous Broadleaf Forest	
Cropland/Grassland Mosaic Cropland/Woodland Mosaic Grassland Shrubland Mixed Shrubland/Grassland Savanna Deciduous Broadleaf Forest	
Cropland/Woodland Mosaic Grassland Shrubland Mixed Shrubland/Grassland Savanna Deciduous Broadleaf Forest Deciduous Broadleaf Forest	
Grassland Grassland Grassland Shrubland Mixed Shrubland/Grassland Savanna Deciduous Broadleaf Forest	
Shrubland Orassland Mixed Shrubland/Grassland Savanna Deciduous Broadleaf Forest Deciduous Broadleaf Forest	
Mixed Shrubland/Grassland Savanna Deciduous Broadleaf Forest Deciduous Need Leaf Forest	
Savanna Deciduous Broadleaf Forest Deciduous Neuklauf Forest	
Deciduous Broadleaf Forest	
Deside on Needlahe & Frencet	
Deciduous Needielear Forest	-
Evergreen Broadleaf Forest Forest	
Evergreen Needleleaf Forest	
Mixed Forest	
Water Bodies Water Bodies	
Herbaceous Wetland Wetland	
Wooded Wetland Wetland	
Barren or Sparsely Vegetated	
Herbaceous Tundra	
Wooded Tundra Grassland	
Mixed Tundra	
Bare Ground Tundra	
Snow or Ice Water Bodies	

"Automatic" Model creation & parameter estimation

Runoff Analysis

PWRI-Distributed Hydrological Model (PDHM) Suzuki et.al, 1996 ~ Ver. 2.0

- Easy parameter calibration
- Developed and tested at many basins
- Jointly Developed

International Centre for Water Hazard and Risk Managemennt (ICHARM) Public Works Reserch Institute (PWRI) CTI Engineering Co., Ltd. NIPPON KOEI Co., Ltd. IDEA Consultants, Inc. Yachiyo Engineering Co., Ltd. Pacific Consultants Co., Ltd. Tokyo Kensetsu Consultants Co., Ltd. NEWJEC Inc. CTI Engineering International Co., Ltd. Infrastructure Development Institute (IDI) Kokusai Kogyo Co., Ltd.

YHyM/BTOP Model Ao et. al, 1998 ~

Ver. 1.4 (Coming Very Soon)

Core module and Multi-Module

Applied well more than 100 river basins

Multi Runoff Analysis Engine

Display Results (IFAS-PDHM)

Base Color Set Color Area Zoom Pull Scale Release 3D TimeControl Position

Dis. River Course Simulation Name:0425

S. Time Control

2004/10/20 13:00

Essential Information

Pseud. Drainage

Basin Attude Dat

Attitude Data

Land Use(GLCC)

Cell Type Tributary Basin River Course Parar Aqueer Parameter

Surface Paramete

1425 Rainfall Distn. WL Surface WL Aguiter Dis. Surface Dis. Aguiter P Dis. River Course

Vertical Seepage

0425

Hydro-graph

Date Time: 2004/10/20 13:00 Maxi

_O×

_O×

200.00

300.00

400.00

500.00 600.00 700.00

00.00

00.00

Graph of tank water level and discharge

Plan view of satellite-based rainfall

Display Results (IFAS-PDHM)

Further Development for poorly-gauged basins

• "Satellite-based rainfall corrections"

with/without ground-based rainfall data

- <u>Real-time</u> flood forecasting
- Integration of <u>flood inundation model</u>

• Enhanced Visualization using freeware (Google Earth/Map)

Incorporation of numerical weather forecast

ex.) Global forecast with 20km-mesh by JMA

- Consideration on uncertainty of forecasting
 - **Ensemble forecast**
- Statistical analysis tools to identify flood risks

•Downscale technology for hydrologic forecasting ex.) Weather Research and Forecasting (WRF) Model)

"Real-time" Flood Alert System at Anywhere

Integration of "Flood Inundation Model" to Distributed Hydrological Model

Enhanced & Easy Visualization

Tone River (Japan) analysis for case of levee breach in Tokyo Area

Hai, Magome, 2008

Lower Mekong River Basin (Zoom : Northwest of Tonle Sap Lake)

Contact

More INFO : suimon@pwri.go.jp

International Centre for Water Hazard and Risk Management (ICHARM) under the auspices of UNESCO http://www.icharm.pwri.go.jp/ September 2008

Thank you very much

