

United Nations Educational, Scientific and Cultural Organization

Water Hazard and Risk Management under the auspices of UNESCO Agency Japan

National Research and Development

AWCI Session Prior to

14th AOGEO Symposium

Sri Lanka

Sri Lanka

- Country in South Asia
- Population : 22 million
- Topography : 0 to 2525 m
- 103 river basins
- 4 climatic seasons
- 3 climatic zones
- 2 main agricultural seasons

Flood and Landslide in Sri lanka

GLOBAL CLIMATE RISK INDEX 2019

Ranking 2017 (2016)	Country	CRI score	Death toll	Deaths per 100 000 inhabitants	Absolute losses (in million US\$ PPP)	Losses per unit GDP in %	Human Development Index 2017 ¹⁰
1 (105)	Puerto Rico ¹¹	1.50	2 978	90.242	82 315.240	63.328	1
2 (4)	Sri Lanka	9.00	246	1.147	3 129.351	1.135	76
3 (120)	Dominica	9.33	31	43.662	1 686.894	215.440	103
4 (14)	Nepal	10.50	164	0.559	1 909.982	2.412	149

Platform on Water Resilience and Disasters in Sri Lanka

IFI promotes an integrated approach to flood management to take advantage of the benefits of floods and use of flood plains while minimizing the social, environmental and economic risks through collaboration among international organizations.

Under IFI scheme, for strengthening Water-related Disasters Resilience and Enabling Sustainable Development in Sri Lanka, the Platform on Water Resilience and Disasters was established with the support of ICHARM in 2017.

Targeted Actions

Climate Change & Adaptation Contingency Planning

> Capacity Building

Flood Early Warning Economic Impacts of Disasters

Progress: Climate Change & Adaptation

Understanding of risk through climate change impact assessment in Mahaweli River Basin

Reference:

Selvarajah, H., Koike, T., Rasmy, M., Tamakawa, K., Yamamoto, A., Kitsuregawa, M., Zhou, L. Development of an Integrated Approach for the Assessment of Climate Change Impacts on the Hydro-Meteorological Characteristics of the Mahaweli River Basin, Sri Lanka. *Water 2021*, 13, 1218. https://doi.org/10.3390/w13091218

Progress: Climate Change & Adaptation

Understanding of risk through climate change impact assessment in Mahaweli River Basin

Selvarajah, H., Koike, T., Rasmy, M., Tamakawa, K., Yamamoto, A., Kitsuregawa, M., Zhou, L. Development of an Integrated Approach for the Assessment of Climate Change Impacts on the Hydro-Meteorological Characteristics of the Mahaweli River Basin, Sri Lanka. *Water 2021*, 13, 1218. https://doi.org/10.3390/w13091218

Requirement of Early warning

- Climate change impact assessment, depicts a 20 years average information.
- But the onset and withdrawal of extreme events are still uncertain based on the available information

Therefore:

 Use seasonal forecasting and short term weather prediction for flood and drought management as;

- Forecasting uses the latest observation
- ▶ Weather prediction is more accurate up to a maximum of 2 weeks
- Seasonal forecast prediction horizon is in months
- **b** Both are very useful in flood and drought management

Progress: Flood Early Warning

Early Warning System for Kalu River Basin (Test operation in DIAS)

- One week ahead ensemble rainfall forecasting us
- Rainfall monitoring and integration (use of automated rain gauges for bias correction of GsMap data with ground data)
- Flood monitoring and forecasting
- Visualization and online dissemination

Future Plan: Flood Early Warning

Early Warning System for Vulnerable River Basin (Upgrading the system to operational level)

Crucial information for enriching EWS & expand the prototype to be Island wide operational EWS

Progress : Capacity Building

Training & Capacity Building Programs in Sri Lanka

PhD in Disaster Management

- 1 candidate has completed
- 1 candidate has enrolled

Masters in Disaster Management

• 3 candidates have enrolled

 Training on climate change impact assessment for Sri Lankan government staff on August 19, 2019

Participated Professonals

- ID : Irrigation Department
- DMC : Disaster Management Center
- MD : <u>Meteorological</u> Department
- NBRO : National Building Research Organization
- MA : <u>Mahaweli</u> Authority

August 21, 2019 (Wednesday) -

- Introduction to real-time flood forecasting system in the Kalu River basin.
- Hands-on training on climate models and statistical downscaling, and assessment of heavy rainfall events in future climate.

August 22, 2019 (Thursday) -

• Setting up for RRI model for flood modeling under changing climate **OSS-CCRA**

Online Synthesis System for Climate Change Resilience & Adaptation

Capacity Building Requirements

- Capacity Building on
 - Hydrological modelling, forecasting and early warning
 - Climate change impact assessment
 - Drought monitoring and prediction
 - Flood hazard mapping and visualization
 - Sediment disaster risk identification
 - Evacuation and contingency planning under COVID-19
 - Ensemble rainfall forecasting
 - Forecast informed reservoir operation for flood control and power generation
 - Cultural and historical approaches for disaster resilience and sustainability

- E-learning under Online Synthesis System of Japan
 - Facilitator training (30 ~ 40 participants will join)
 - Expert training (100 ~200 participants will be trained by facilitators)

E-learning under OSS: Plan and Schedule

Totally 40 facilitators from stakeholder agencies will be trained.

- Irrigation Department
- Disaster Management Centre
- Department of Meteorology
- National Building Research Organization
- Mahaweli Authority of Sri Lanka

Course 1: Science bases for climate change adaptation and disaster resilience							
CC-1	Climate resilience and sustainability by all	Prof. Toshio Koike					
CC-2	Introduction to atmospheric modeling for climate change impact assessment and hydrologic early warning	Prof. Tomoki Ushiyama					
CC-3	Introduction to hydrological modeling for climate change impact assessment and flood early warning	Prof. Mohamed Rasmy					
CC-4	Climate change impact assessment in the Mahaweli river basin	Dr. Hemakanth Selvarajah					
DM-1	Introduction to agricultural drought monitoring and prediction	Dr. Hiroyuki Tsutsui					
CH-1	Cultural and historical approaches for disaster resilience and sustainability	Prof. Kenzo Hiroki					
Course 2: Actions to be taken for climate change adaptation and disaster resilience							
OSS-1	Let's use an online synthesis system for sustainability and resilience (OSS-SR)	Dr. Katsunori Tamakawa					
DRR-1	Flood hazard mapping and visualization	Dr. Naoko Nagumo					
DRR-2	Flood disaster evacuation and contingency planning under COVID-19	Prof. Miho Ohara					
DRR-3	Sediment disaster risk identification	Dr. Daisuke Harada					
DRR-4	Hydroelectric dam operation support to improve flood control and power generation	Prof. Toshio Koike					
DRR-5	New strategies for reservoir operation using seasonal forecast						
	streamflow in Mahaweli River Basin, Sri Lanka	Dr. Hemakanth Selvarajah					

Thank you very much